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What is this module about?



The oldest classical integrable system: Kepler’s problem



Classical integrability in a nutshell

We have
I A symplectic manifold M of dimension 2n: physically the phase

space or space of ‘positions and momenta’
I Poisson brackets {f ,g} for f ,g ∈ C∞(M)

I A Hamiltonian H ∈ C∞(M) which generates time evolution
according to

ḟ = {H, f}.

We want:
I n − 1 further functions f1, . . . , fn−1 so that

{H, fi} = 0, and {fi , fj} = 0, i , j = 1, . . . , (n − 1).

I An understanding of the geometrical flow generated by H.



Contents

1. Foundations: Review of manifolds, differential forms, vector
fields and Lie derivatives; Lie groups and Lie algebras.

2. Introduction to symplectic geometry and mechanics:
Hamiltonian mechanics; Poisson brackets; symmetry and
Noether’s theorem in Hamiltonian mechanics; moment(um)
maps; Liouville theorem; examples

3. Poisson-Lie structures I: Poisson manifolds and symplectic
leaves; co-adjoint orbits; Poisson-Lie algebras and Poisson-Lie
groups; examples.

4. Poisson-Lie strcutures II: Co-boundary Poisson-Lie algebras
and the classical Yang-Baxter equations; classical doubles;
Sklyanin brackets; dressing action and symplectic leaves;
examples.

5. Classical integrable systems: Lax pairs and classical
r-matrices; construction of integrable systems out of co-boundary
Lie bi-algebras; applications (e.g Toda chain)



Quantum integrability: the hydrogen atom



Quantum integrability in a nutshell

We have
I A Hilbert space H: the space of quantum states.
I Self-adjoint operators A : H → H: the observables of the theory.
I A particular self-adjoint operator, called the Hamiltonian H, which

generates time evolution according to

Ȧ = i~[H,A].

We want:
I A (possibly infinite) family operators Ai , i = 1,2 . . . which satisfy

[Ai ,Aj ] = [Ai ,H] = 0, i , j = 1, . . .

I The ground state of H
I The discrete spectrum of H and the Ai , i = 1,2 . . .

I Other quantum properties of the system such as correlation
functions.



Contents

1. Statistical lattice models & combinatorics: Motivating
examples from enumerative combinatorics; partition functions;
transfer matrices; quantum R-matrices; the quantum
Yang-Baxter equation;

2. The Yang-Baxter Algebra & the Bethe Ansatz: Monodromy
matrices and the Yang-Baxter algebra; diagonalising the transfer
matrix; Bethe equations; guiding example: the 6-vertex model on
the cylinder and the torus

3. Quantum Groups I: Axioms and examples; the Yang-Baxter
algebra as a quantum group; the 6-vertex model and XXZ
spin-chain as motivating example

4. Quantum Groups II: Representation theory; Uq(ŝl2); the
R-matrix; short-exact-sequences and the XXZ fusion hierarchy

5. Quantum integrability at the boundary: The reflection
equation and K-matrices; examples of diagonal and
non-diagonal boundary conditions; the XXZ Hamiltonian and
Bethe equations in the presence of boundaries;
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Who should take this module?



Prerequisites

I Some understanding of differentiable manifolds and differential
forms, group theory

I Some familiarity with Lie algebras and Lie groups would be
helpful but will not be assumed.



Take this course if you are interested in ...

I A rapidly evolving field which connects algebra, geometry,
topology and physics

I A geometrical formulation of classical mechanics in the language
of symplectic and Poisson structures

I The classical Yang-Baxter equation and how it gives rise to
Poisson-Lie structures and integrable systems

I The role of quantum groups in quantum integrable systems
I A toolkit for solving problems in quantum field theory, string

theory and condensed matter physics which are not (easily)
amenable to other techniques



Who is teaching this module?
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