
Supplementary modules



What’s on offer
Almost all of this year’s supplementary modules are provided by MIGSAA. . .

. . . all except one!

That’s

The mod 2 Steenrod algebra in theory and in practice

taught by Andy Baker (Glasgow), starting in week 3 of this semester.



The mod 2 Steenrod Algebra in Theory and in Practice

The mod 2 Steenrod Algebra A is the ring of operations (natural
endomorphisms) of mod 2 cohomology H∗(−;F2).
Topics:
1) The Steenrod operations, the Steenrod algebra and its dual. Algebraic
structure, finite dimensional sub Hopf algebras including the A(n).
2) Applications in stable and unstable homotopy theory.
3) The Steenrod algebra in the wider world: group cohomology and
invariant theory,
4) Deeper structure of modules over A and A(n). Stable module
category of A(1).
Prerequisites: Suitable for anyone with basic knowledge of cohomology
with coefficients for spaces and who wishes to learn about one of the
central tools of modern homotopy theory. Algebraic aspects might
interest mathematicians working on representation theory of finite
dimensional algebras, cohomology of finite groups and Hopf algebras.
Practicalities: May be an opportunity for PhD students and others to
give short talks on topics that particularly interest them – this can be
arranged during the course.

Andrew Baker The mod 2 Steenrod Algebra in Theory and in Practice
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1 Semester 1 courses
Advanced PDE I: Elliptic and parabolic PDE
Analysis and Numerics of Stochastic PDEs
A Fourier Based Approach of (stochastic) Integration

2 Semester 2 courses
Analysis of Diffusion Processes
What is ... Numerical Analysis?
Advanced PDE II: Hyperbolic PDEs
Homogenisation I
Homogenisation II



Semester 1 courses Advanced PDE I: Elliptic and parabolic PDE

Advanced PDE I: Elliptic and parabolic PDE

1) Examples of elliptic equations, maximum principles (strong, weak),
Hopf’s Lemma, comparison principle.
2) Classical solutions, Bernstein estimate, applications.
3) Schauder estimates
4) Approximation by smooth functions, Sobolev spaces, embeddings,
traces
5) Weak solutions, Lax-Milgram
6) Interior regularity, Boundary regularity
7) Parabolic equations, main examples, maximum principle
8) Parabolic setting and Sobolev spaces
9) Global in time solutions for nonlinear parabolic equations with small
initial date
10) Energy estimates



Semester 1 courses Advanced PDE I: Elliptic and parabolic PDE

Advanced PDE I: Elliptic and parabolic PDE, cont’d

Prerequisites:

1) rigorous multivariable calculus (continuity, differentiability, chain rule,
integration)

2) Metric spaces, Banach spaces, Hilbert space, weak/strong
convergence

3) vector calculus, Green’s formula, (normal, tangent/vectors,
parametrisation of surfaces and curves.)

Book: L.C. Evans, Partial Differential Equations, AMS Graduate
Studies in Mathematics.



Semester 1 courses Analysis and Numerics of Stochastic PDEs

Analysis and Numerics of Stochastic PDEs

In the first part of the lectures basic methods of solving stochastic
partial differential equations (SPDEs) of parabolic type will be
presented. In particular, main results of the L2 and Lp theories for
SPDEs given in the whole Euclidean space will be summarised, and
the theory of SPDEs given on domains will be presented in more
details.

In the second part of the lectures methods for solving SPDEs
numerically will be studied, theorems on accuracy of numerical
schemes will be proved. Applications from population genetics and
stochastic filtering will be discussed.



Semester 1 courses A Fourier Based Approach of (stochastic) Integration

A Fourier Based Approach of (stochastic) Integration
and Applications

In 1961, Ciesielski established a remarkable isomorphism of spaces of
Hölder continuous functions and Banach spaces of real valued
sequences. The isomorphism can be established along Fourier type
expansions of Hölder continuous functions using the Haar-Schauder
wavelet. We will start with Schauder representations for a pathwise
approach of the integral of one function with respect to another one,
using Ciesielski’s isomorphism. We cover the paradigm of Young
integral and the rough paths integral of T. Lyons. Our approach allows
understanding this more involved theory of integration, purely from an
analytical perspective using Paley-Littlewood decompositions of
distributions, and Bony paraproducts in Besov spaces.



Semester 1 courses A Fourier Based Approach of (stochastic) Integration

A Fourier Based Approach of (stochastic) Integration
and Applications, cont’d

We apply the theory within a probabilistic framework and express
Brownian motion in this language to derive several of its properties.
Moreover, the 2nd part of the course focuses on themes relating to the
applications of the theory developed in the 1st part and adapts to the
audience. We cover the theory of Large Deviations Principles and
some of its applications to in the space of continuous functions, and we
apply it to solve stochastic differential equations in a pathwise manner.

Prerequisites: SMSTC Probability 2-Stochastic Processes (or better)



Semester 2 courses Analysis of Diffusion Processes

Analysis of Diffusion Processes

The theory of diffusion processes has a very rich mathematical
structure. One of the key features of such a theory is the interplay
between probabilistic and analytic techniques. Analytic techniques are
employed to give a macroscopic description of the dynamics, while
probabilistic tools (stochastic analysis and stochastic processes) are
used for the microscopic description.

The course will present the theory of time-homogeneous diffusion
processes from the analysis standpoint.



Semester 2 courses Analysis of Diffusion Processes

Analysis of Diffusion Processes, cont’d

Part 1:
Markov Semigroups and their generators. Dual semigroup. Invariant
and reversible measures
Ergodic Theory for Markov Semigroups: Strong Feller semigroups,
Krylov-Bogoliubov Theorem, Doob’s Theorem, Prokhorov’s theorem
Diffusion processes: definition, relation with stochastic differential
equations, Backward Kolmogorov and Fokker-Planck equation,
Feynman-Kac
Reversible diffusions: spectral gap inequality, exponentially fast
convergence to equilibrium
Over and under-dumped Langevin equation



Semester 2 courses Analysis of Diffusion Processes

Analysis of Diffusion Processes, cont’d

Part 2: hypoelliptic diffusions
Elliptic and hypoelliptic diffusions
The Hörmander condition (HC): this is a sufficient condition for
hypoellipticity and will be presented by a probabilistic, analytic and
geometric standpoint. In this respect, after introducing the HC (which
stems from purely analytic considerations) we will discuss
Some basic notions of differential geometry: vector fields, integral
curves and distributions (distributions in geometrical sense, not in
probabilistic sense), orbits of a vector field
Geometric meaning of the HC: Chow’s theorem and Sussman’s orbit
theorem
Probabilistic bearings of the Hörmander condition: existence of a
density for the law of SDEs (The three above points may seem
unrelated; as it turns out, they are very closely related indeed!)
Examples in statistical mechanics: heat bath models, second order
Langevin equation



Semester 2 courses Analysis of Diffusion Processes

Analysis of Diffusion Processes, cont’d

Relation to other courses:

The background for this course is given by the Probability 1 SMSTC
stream (and some lectures of the Probability 2 stream), where basic
stochastic calculus and the basic theory of Markov Processes is
covered. Moreover students with a background in analysis will find
obvious relations with the theory of parabolic PDEs. There are strong
links with the courses on dissipative PDEs as well.

Prerequisites: Basic probability theory, basic stochastic calculus (e.g.
Ito formula), very basic SDE and PDE theory



Semester 2 courses What is ... Numerical Analysis?

What is ... Numerical Analysis?

A similar course ”What is... PDEs?” currently runs informally at HW.
The format is highly interactive, where students and upcoming seminar
talks determine the content of the lectures. Interested students will
give a 60-minute lecture on a topic of their choice, ideally a topic
related to their research interests.

Aim: This course aims to give an introduction to standard techniques
in the numerical analysis of partial differential equations, with a focus
on the underlying analysis.

Prerequisites: a previous course in either PDE or their numerical
analysis

Contents: We cover some essential basic and advanced topics in the
numerical analysis of PDEs. After the course the student should know
key ideas in a broad range of topics, as they are relevant in their
research or in relevant numerical analysis talks.



Semester 2 courses What is ... Numerical Analysis?

What is ... Numerical Analysis?, cont’d

Basics I: Numerical methods, such as finite differences, finite elements,
finite volume methods, boundary elements, time-stepping schemes

Basics II: Relevant topics in analysis, such as approximation properties
of functions, Sobolev spaces and functional analysis

Finite element methods for elliptic problems: Conforming variational
and mixed methods, error analysis, adaptive methods

Non-conforming and non-standard methods

Finite elements for the Stokes problem, analysis and stabilisation

Heat and wave equations: time-stepping schemes and their analysis

Fast solvers: review of numerical linear algebra, preconditioning,
multigrid methods

Applications in computational mechanics, fluid dynamics or biology



Semester 2 courses Advanced PDE II: Hyperbolic PDEs

Advanced PDE II: Hyperbolic PDEs

This course is dedicated to the study of hyperbolic PDEs in Sobolev
spaces. We will mainly focus on nonlinear wave equations and
symmetric hyperbolic systems.
The course will begin with some preliminary ideas including the
method of characteristics, finite speed of propagation, and finite time
blow-up.
Then, there will be a brief discussion of classical methods including the
explicit solution formula of D’Alembert and Kirchhoff and the
Cauchy-Kovalevskaya existence and uniqueness theorem.
The course will then turn to Sobolev space methods. These include
energy estimates, Klainerman-Sobolev inequality, the vector-field
method, and well-posedness of semilinear wave equations using
Sobolev estimates.



Semester 2 courses Advanced PDE II: Hyperbolic PDEs

Advanced PDE II: Hyperbolic PDEs, cont’d

In the final two weeks we will cover special topics at the instructor’s
discretion.
Possible special topics are small data global well-posedness of
quasi-linear wave or Klein-Gordon equations (study started
independently in works of Klainerman and Shatah from the 1980s), the
global well-posedness of the defocusing energy-critical semilinear
wave equation (work of Shatah-Struwe, 1994), or a survey of
geometric hyperbolic PDE such as the Yang-Mills and wave maps
equations.

Prerequisites: Students should be familiar with Banach and Hilbert
spaces, dual spaces, and weak and strong convergence. The course
”Advanced PDEs I” is suggested but not required.



Semester 2 courses Homogenisation I

Homogenisation I

Homogenization theory: multiscale modelling and analysis of physical
and biological processes The aim of homogenization theory is to
determine the macroscopic behaviour of a system comprising
microscopic heterogeneities, e.g. transport processes in a porous
medium, signalling processes in a cell tissue, deformations of
composite materials. This means that the mathematical model defined
in a heterogeneous medium is replaced by equations posed in a
homogeneous one, which provide a good approximation of properties
of the original microscopic system. In this course we will learn the
main methods of homogenization theory, which are used to prove that
solutions of microscopic problem, depending on a small parameter,
converge to a solution of the corresponding macroscopic problem, as
the small parameter (determined by the characteristic size of the
microscopic structure) goes to zero.



Semester 2 courses Homogenisation I

Homogenisation I, cont’d

Main methods of periodic homogenization: formal asymptotic
expansion, two-scale convergence, unfolding operator
derivation of compactness results for two-scale convergence and
periodic unfolding operator
multiscale modelling and analysis of fluid flow in porous media
multiscale modelling and analysis of transport and reaction processes
in perforated and partially perforated domains (i.e. signalling and
transport processes in biological tissues, plant root growth)
dual-porosity: modelling and multiscale analysis (transport and
reaction processes in fractured media, in soil with porous particles, in
cell tissues)
multiscale analysis of equations of linear elasticity and viscoelasticity



Semester 2 courses Homogenisation II

Homogenisation II: Stochastic Problems

In this course, various concepts on stochastic homogenization theory
are introduced with a view on multiscale modelling of multiphase
systems. Stochastic homogenisation is a reliable and systematic
theory for averaging partial differential equations defined on strongly
heterogeneous media and domains with random characteristics. It has
a wide range of applications from (reactive) transport in porous media,
over to waves in heterogeneous media up to material science such as
energy storage/conversion devices.It allows to rigorously derive
effective macroscopic properties of strongly heterogeneous random
media such as composite materials, the effective macroscopic
formulation of microscopic systems, as well as the stable construction
of multiscale computational schemes. We shall illustrate these features
by considering various examples from continuum mechanics and
physics of composite materials and porous media.



Semester 2 courses Homogenisation II

Homogenisation II: Stochastic Problems, cont’d

We begin with deriving effective stochastic differential equations
(SDEs) based on the asymptotic two-scale expansion method. This
provides a systematic tool to derive effective diffusion coefficients for
heterogeneous materials. We will briefly discuss how to numerically
solve SDEs and their effective/upscaled formulation. We then
introduce the two-scale convergence methodology which is the basis
for the stochastic two-scale convergence and the stochastic two-scale
convergence in the mean. As before, we will discuss how to compute a
numerical approximation of the resulting limit problems. The last topic
of the course will be on general concepts of percolation theory and
investigate similarities and differences to homogenization. Again, we
will also give the basic ideas how to computationally study percolation
problems. All these topics will be discussed based on examples and
applications such as interacting particle systems under
uncertainty/randomness, and if time allows we look also at the theory
of fluctuations and correlations.



Semester 2 courses Homogenisation II

Homogenisation II: Stochastic Problems, cont’d

Recommended but optional prerequisites:

This course is a follow up on the course HOMOGENIZATION I, but
students and researchers interested in stochastic averaging
techniques will be able to follow it without having attended the first
course.

The following experience is helpful but not required: Advanced PDEs 1
and basic knowledge in Probability Theory and stochastic differential
equations and associated Kolmogorov equations. Useful are also
basic knowledge about Measure and Integration Theory, and
Functional Analysis. Basic knowledge about Galerkin/Finite Element
approximations and Finite Difference methods.


