SMSTC Statistics Stream

Perth Symposium 29 September 2016

Steve Buckland

School of Mathematics & Statistics University of St Andrews steve@st-andrews.ac.uk

Linear model

 $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip} + \varepsilon_i \quad \varepsilon_i \sim \mathbb{N}(0, \sigma^2)$

Linear model

Revision of linear models

$$y_1 = \beta_0 + \beta_1 x_{11} + \beta_2 x_{12} + \ldots + \beta_p x_{1p} + \varepsilon_1 \quad \varepsilon_1 \sim \mathbb{N}(0, \sigma^2)$$

$$\vdots \quad \vdots \quad \vdots$$

 $y_n = \beta_0 + \beta_1 x_{n1} + \beta_2 x_{n2} + \ldots + \beta_p x_{np} + \varepsilon_n \quad \varepsilon_n \sim \mathbb{N}(0, \sigma^2)$

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & \dots & x_{1p} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & \dots & x_{np} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$
$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \quad \boldsymbol{\varepsilon} \sim \mathbb{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

$$f(X) = \beta_0 + \sum_{j=1}^p X_j \beta_j$$
 RSS $(f) = \sum_{i=1}^N (y_i - f(x_i))^2$

$$RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$$

$$egin{aligned} & rac{\partial \mathrm{RSS}}{\partial eta} = -2 \mathbf{X}^T (\mathbf{y} - \mathbf{X} eta) \ & rac{\partial^2 \mathrm{RSS}}{\partial eta \partial eta^T} = 2 \mathbf{X}^T \mathbf{X}. \end{aligned}$$

$$\mathbf{X}^T(\mathbf{y} - \mathbf{X}\beta) = 0$$

 $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

 $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ What happens when

this matrix is singular?

 $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

What happens when this matrix is singular?

Ridge regression

$$\hat{eta}^{\mathrm{ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

 $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

What happens when this matrix is singular?

Ridge regression

$$\hat{\beta}^{\text{ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$
$$\text{RSS}(\lambda) = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta) + \lambda \beta^T \beta$$

Lasso (Semester 2)

Lasso (Semester 2)

Ridge regression

1/λ

Radiocarbon data

- high precision measurements of radiocarbon on Irish oak
- used to construct a calibration curve.

The variables are:

Rc.age: age from the radiocarbon dating process Precision: a measure of precision of the dating process Cal.age: true calendar age

Linear interpolation

Age from carbon dating

Embedding population dynamics models in inference

States

We categorize animals by their state, and represent the population as numbers of animals by state.

Examples of factors that determine state: age; sex; size class; genotype; sub-population (metapopulations); species (e.g. predator-prey models, community models).

States

Suppose we have *m* states at the start of year *t*. Then numbers of animals by state are:

$$\mathbf{n}_{t} = \begin{vmatrix} n_{1,t} \\ n_{2,t} \\ n_{3,t} \\ \vdots \\ n_{m,t} \end{vmatrix}$$

NB: These numbers are unknown!

The BAS model

$\mathbf{E}(\mathbf{n}_{t+1} \mid \mathbf{n}_t, \boldsymbol{\theta}) = \mathbf{B}\mathbf{A}\mathbf{S}\mathbf{n}_t$

where

$$\mathbf{B} = \begin{bmatrix} \lambda_2 & \lambda_3 & \cdots & \lambda_m \\ 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 1 \end{bmatrix}$$

$$\mathbf{S} = \begin{bmatrix} \phi_1 & 0 & \cdots & 0 \\ 0 & \phi_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \phi_m \end{bmatrix}$$

 $\theta = \begin{pmatrix} \lambda \\ \phi \end{pmatrix}$

Leslie matrix

The product **BAS** is a Leslie projection matrix:

$$\mathbf{BAS} = \begin{bmatrix} \phi_1 \lambda_2 & \phi_2 \lambda_3 & \cdots & \phi_{m-1} \lambda_m & \phi_m \lambda_m \\ \phi_1 & 0 & \cdots & 0 & 0 \\ 0 & \phi_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \phi_{m-1} & \phi_m \end{bmatrix}$$

Observation equation

$$E(\mathbf{y}_t \mid \mathbf{n}_t, \boldsymbol{\theta}) = \mathbf{O}_t \mathbf{n}_t$$

e.g. metapopulation with two sub-populations, each split into adults and young, unbiased estimates of total abundance of each sub-population available:

$$E(\mathbf{y}_{t}) = \begin{bmatrix} E(y_{1,t}) \\ E(y_{2,t}) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} n_{01,t} \\ n_{11,t} \\ n_{02,t} \\ n_{12,t} \end{bmatrix}$$

Elements required for Bayesian inference

- $g(\theta)$ Prior for parameters
- $g_0(\mathbf{n}_0 | \mathbf{\theta})$ pdf (prior) for initial state
- $g_t(\mathbf{n}_t | \mathbf{n}_{t-1}, ..., \mathbf{n}_0, \mathbf{\theta}) \quad \text{pdf for state at time } t$ given earlier states
 - $f_t(\mathbf{y}_t | \mathbf{n}_t, \boldsymbol{\theta})$ Observation pdf

Bayesian inference

Joint prior for θ and the \mathbf{n}_t :

$$g(\mathbf{\theta}) \times g_0(\mathbf{n}_0 | \mathbf{\theta}) \times \prod_{t=1}^T g_t(\mathbf{n}_t | \mathbf{n}_{t-1}, \dots, \mathbf{n}_0, \mathbf{\theta})$$

Likelihood:
$$\prod_{t=1}^{T} f_t(\mathbf{y}_t | \mathbf{n}_t, \boldsymbol{\theta})$$

Posterior.

$$g(\mathbf{n}_{0},...,\mathbf{n}_{T},\boldsymbol{\theta} | \mathbf{y}_{1},...,\mathbf{y}_{T}) = \frac{g(\boldsymbol{\theta}) \times g_{0}(\mathbf{n}_{0} | \boldsymbol{\theta}) \times \prod_{t=1}^{T} \{g_{t}(\mathbf{n}_{t} | \mathbf{n}_{t-1},...,\mathbf{n}_{0},\boldsymbol{\theta}) \times f_{t}(\mathbf{y}_{t} | \mathbf{n}_{t},\boldsymbol{\theta})\}}{f(\mathbf{y}_{1},...,\mathbf{y}_{T})}$$

Generalizing the framework

- $g(\mathbf{M})$ Model prior
- $g(\boldsymbol{\theta} | \mathbf{M})$ Prior for parameters
- $g_0(\mathbf{n}_0 | \boldsymbol{\theta}, \mathbf{M})$ pdf (prior) for initial state

 $g_t(\mathbf{n}_t | \mathbf{n}_{t-1}, ..., \mathbf{n}_0, \boldsymbol{\Theta}, \mathbf{M})$ pdf for state at time t given earlier states

 $f_t(\mathbf{y}_t | \mathbf{n}_t, \mathbf{\theta}, \mathbf{M})$ Observation pdf

Generalizing the framework

Replace $E(\mathbf{n}_{t+1} | \mathbf{n}_t, \mathbf{\theta}) = \mathbf{P}_t \mathbf{n}_t$

by
$$\mathbf{n}_{t+1} = \mathbf{P}_t(\mathbf{n}_t)$$

where $\mathbf{P}_{t}(\mathbf{n}_{t}) = \mathbf{P}_{K,t}(\mathbf{P}_{K-1,t}(\cdots \mathbf{P}_{1,t}(\mathbf{n}_{t})\cdots))$

and $\mathbf{P}_{k,t}(\cdot)$ is a possibly random operator

Introduce some key topics which lie at the heart of research in statistical methods.

The intention is not to be a comprehensive study of all the most advanced statistical techniques available (that would be somewhat difficult in approximately 40 hours!) but to present some key concepts that form a basis for more advanced and sophisticated ideas.

Develop good computational skills using R.

R is a very powerful statistical computing environment with an extensive suite of libraries/packages and one of the main platforms for statistical research both in academia and industry throughout the world. Knowledge of R is likely to be very useful whetever your PhD topic may be.

The Scottish Mathematical Sciences Training Centre Statistics stream Prerequisites

Basic concepts in:

- (i) probability (elementary probability distributions);
- (ii) statistics (ideas of estimation, confidence intervals, hypothesis tests); and

(iii) calculus.

The level required in these areas would usually be provided in a first undergraduate course.

The Scottish Mathematical Sciences Training Centre Statistics stream Method of delivery

As standard each lecture will be a total of 2 hours (including a tea/coffee break!) on Tuesday from 1.00-3.00.

Questions are encouraged during lectures and there will also be opportunities to discuss particular issues that arise within lectures and/or associated exercises. The Scottish Mathematical Sciences Training Centre Statistics stream Assessments

Short projects after each block of 5 sessions.

These will be marked and individual feedback provided.

The Scottish Mathematical Sciences Training Centre Statistics stream Stream outline

<u>Part 1:</u> Introduction to R Review of linear models Likelihood and optimisation

Review of generalised linear models (GLMs) Simulation and bootstrapping Case study <u>Part 2:</u> Random effects models Modern regression Case study

An Introduction to Markov chain Monte Carlo (MCMC) Methods

Introduction to R

1 Data structures and types; standard plotting facilities; elementary statistical functions; distributions within R; simple control structures; simple example of writing a function; a taster of more sophisticated facilities.

Review of linear models

- 2 Basic results on estimation, confidence intervals and tests within the linear model; model checking; the use of factors; fitting linear models in R.
- 3 The analysis of simple designed experiments; case studies of linear models

$$f(X) = \beta_0 + \sum_{j=1}^p X_j \beta_j$$

Likelihood and optimisation

- 4 Likelihood principles and key distributional results; examples of likelihood fitting and analysis; Newton's method for optimisation.
- 5 Plotting and inspection of two-parameter likelihoods; more general methods of optimisation of multiparameter functions; implementation in R.

Review of GLMs

- 6 Exponential family, with examples for standard distributions (e.g. normal, gamma, Binomial, Poisson, Negative Binomial); link functions; examples.
- 7 Iteratively weighted least squares; model fitting within R, including function glm; case studies.

$$f(X) = \beta_0 + \sum_{j=1}^p X_j \beta_j$$
 Nonlinear transformation

Simulation and bootstrapping

- 8 Non-parametric bootstrap for calculating standard errors; confidence intervals (percentile intervals); implementing the bootstrap within R.
- 9 Parametric bootstrap, simulation methods and implementation in R; examples (e.g. linear regression).

Case study

10 This session will be constructed around real scientific studies where statistical methods were central to the solution of the problem of interest. The methods required will involve some of the techniques discussed earlier in the course. However, some further techniques will be introduced, as required by the analysis.

Random effects models

- 11 A summary of methods for linear mixed effects models as in Pinheiro & Bates; case studies.
- 12 A summary of methods for non-linear mixed effects models as in Pinheiro & Bates; case studies.

Modern regression

- 13 Density estimation; different methods of nonparametric regression with one and two covariates; bandwidth selection; examples of use.
- 14 Additive models; the backfitting algorithm; generalized additive models; examples.

An Introduction to MCMC Methods

- 16 Introduction to Bayesian methods, prior specification, posterior distribution, summary statistics, prior sensitivity, marginal distributions; underlying idea behind Markov chain Monte Carlo.
- 17 Metropolis-Hastings algorithm; Gibbs sampler; issues of convergence; length of burn-in; mixing properties; tuning parameters.
- 18 Introduction to WinBUGS; basic examples to demonstrate previous principles.
- 19 Coding MCMC simulations within R; further examples.
- 20 Introduction to advanced topics, for example, the use of auxiliary variables (e.g. random effects), missing data, model selection; WinBUGS/R.

Case study

This session will be constructed around real scientific studies where statistical methods were central to the solution of the problem of interest. The methods required will involve some of the techniques discussed earlier in the course. However, some further techniques will be introduced, as required by the analysis.