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Revision of linear models 
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singular? 
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Lasso (Semester 2) 
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True calendar age 



Linear interpolation 
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True calendar age 





H=10 

H=50 H=100 

H set by AICC 



Embedding population 

dynamics models in 

inference  



States 

We categorize animals by their  

state, and represent the population  

as numbers of animals by state. 

Examples of factors that determine state: 

age; sex; size class; genotype; 

sub-population (metapopulations); 

species (e.g. predator-prey models, 

community models). 



States 
Suppose we have m states  

at the start of year t.  Then 

numbers of animals by state are: 
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The BAS model 

where 
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Leslie matrix 

The product BAS is a Leslie projection matrix: 
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Observation equation 

ttttE nOθny ),|(

e.g. metapopulation with two sub-populations,  

each split into adults and young, 

unbiased estimates of total abundance  

of each sub-population available: 
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Elements required for Bayesian 

inference 

)(θg Prior for parameters 

)|( 00 θng pdf (prior) for initial state 

),,...,|( 01 θnnn tttg pdf for state at time t  

given earlier states 

),|( θny tttf Observation pdf 



Bayesian inference 

Joint prior for     and the     :  
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Generalizing the framework 

)|( Mθg Prior for parameters 

),|( 00 Mθng pdf (prior) for initial state 

),,,...,|( 01 Mθnnn tttg pdf for state at time t  

given earlier states 

),,|( Mθny tttf Observation pdf 

)(Mg Model prior 



Generalizing the framework 

Replace 

by 

where 
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and     is a possibly random operator )(, tkP





















Nonlinear 

transformation 














