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Revision of linear models
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fX) =B+ XiBi  RSS(f) =3 (yi — f(w:))’

Linear model,
covered in Semester 1
(Regression and
Simulation Methods)
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fX)=Bo+ X8 RSS(f) =) (vi— f(:))?
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RSS(B) = (y — XB)T(y — Xp)
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f=X"X)"'X"y

What happens when this
matrix is singular?

Ridge regression
Bridge _ (XTX + AI)_]'XTy
RSS(\) = (y — X8) ' (y — XB) + 2313
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Lasso (Semester 2 — Modern
Regression and Bayesian Methods)
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Lasso (Semester 2)

N p 2
ﬁla.sso — argglin Z (yz — /60 o Z 37@'5,?'/83')
i=1 =1

p
subject to Z Bj] < t.

=1

Blasso _

||M2

argmm {

—Bo— Y i)+ |’8~?‘|}
j=1 I=1



Coefficients

lcavol

sV
lweight

pPag
lbph

age

0.0

0.2

[ | I 1
0.4 0.6 0.8 1.0

Shrinkage Factor s

1/A



Coefficients

Ridge regression

1/A

Coellicients

Lasso

0.0 0.2 0.4 [R] 0.8 1.0




Classical Lasso

J
W = argmin{(y— Xw)? —I—AZ\wﬂ}

Trevor Hastie
Robert Tibshirani
Jerome Friedman

The Elements of
Statistical Learning

Second Edition

7=1

Methodology
covered in detalil
in Semester 2 of

the Statistics

stream



Cosmic rays from the sun collides with atoms in the
upper atmosphere producing energetic neutrons

— o — o

neutron  +  Nitrogen-14

The energefic neutron collided with a Nitrogen-14
atom to produce a Carbon-14 atom and a proton

Carbon-14 + proton

The Carbon-14 oxidises to Carbon-14
dioxide and is transported to the lower

atmosphers

Plants absorb Carbon dioxide during
photosynthesis and take in Carbon-14
in a ratio similar to that of Carbon-14
in the atmosphere

Carbon-14 is taken in by animals
= and humans through the food chain

&.@@ Following death or burial,
the unstable Carbon-14 in

_ bpones undergo beta decay
The wood from felled frees T .

used for construction or
paper manufacture also
undergo Carbon-14 decay

to form Nitrogen-14

2 Pass My Exams



Nonparametric regression models - The problem

Radiocarbon data

» high precision measurements of radiocarbon cm[lrish oak}

» used to construct a{calibration curve.}

The variables are:
Rc.age: age from the radiocarbon dating process
Precision: a measure of precision of the dating process
Cal.age: true calendar age



Age from carbon dating
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Age from carbon dating
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Radiocarbon age
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Embedding population
dynamics models In
iInference



AlM

A generalized methodology for
defining and fitting matrix
population models that
accommodates process
variation (demographic and
environmental stochasticity),
observation error and model
uncertainty



States

We categorize animals by their
state, and represent the population
as numbers of animals by state.

Examples of factors that determine state:
age; sex; size class; genotype;
sub-population (metapopulations);
species (e.g. predator-prey models,
community models).



n,

States

Suppose we have m states
at the start of year t. Then
numbers of animals by state are:

NB: These numbers
are unknown!



The BAS model
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Leslie matrix

The product BAS is a Leslie projection matrix:

quz %A3 qam—lAm q”m m
@ 0 0 0
BAS =

S
S
S
HiNgE




Observation equation
E(y,|n,,0)=0On,

e.g. metapopulation with two sub-populations,
each split into adults and young,
unbiased estimates of total abundance
of each sub-population available:
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Fitting models to time series of data

 Kalman filter
Normal errors, linear models
or linearizations of non-linear models

 Markov chain Monte Carlo

* Sequential Monte Carlo methods



Elements required for Bayesian

inference
2(0) Prior for parameters
g,(n,|0) pdf (prior) for initial state

g (n |n_,.n,0) pdfforstate attime ¢
given earlier states

f,(y,n,.0) Observation pdf



Bayesian inference

Joint prior for 0 and then, :
T

g(0)*xg,(n,[0)x |_I g,(m, n,_,...ny0)
t=1

Likelihood: |—| f.(y,|n,,0)

Posterior:

g(0)xgy(n, [0)x[{g,(m, [n_p.....0.0)x £y, m,.0)

gng,...,n7,00y,,...,y,) =
0 T 1 r f(y19°°'9YT)



Generalizing the framework

g(M) Model prior

g(0| M) Prior for parameters
g,(n, |0,M) pdf (prior) for initial state

g.(n |n,_,.,n,0 M) pdf for state at time ¢
given earlier states

f,(y,In,,0,M)  Observation pdf



Generalizing the framework

Replace E(m,, |n,,0)=Pn

r+1
by n, =P(,)

where P,(n,) =P, (P._,(--P (n,)-"))

and P, (D is a possibly random operator



The Scottish Mathematical Sciences Training Centre
Statistics stream

Aims

Introduce some key topics which lie at the heart of research in
statistical methods.

The intention is not to be a comprehensive study of all the most
advanced statistical techniques available (that would be somewhat
difficult in approximately 40 hours!) but to present some key con-
cepts that form a basis for more advanced and sophisticated ideas.

NB: for statistics students, more advanced and more
specific skills are taught in APTS workshops:
https://www2.warwick.ac.uk/fac/sci/statistics/apts/


https://www2.warwick.ac.uk/fac/sci/statistics/apts/

The Scottish Mathematical Sciences Training Centre
Statistics stream

Aims

Develop good computational skills using R.

R is a very powerful statistical computing environment with an
extensive suite of libraries /packages and one of the main platforms
for statistical research both in academia and industry throughout
the world. Knowledge of R is likely to be very useful whetever your
PhD topic may be.



The Scottish Mathematical Sciences Training Centre
Regression and Simulation Methods

Prerequisites

Basic concepts in:

(i) [probability (elementary probability distributions);

(ii) statistics (ideas of estimation, confidence intervals, hypothesis
tests); and

(iii) [calculus. |

The level required in these areas would usually be provided in a
first undergraduate course.

The prerequisite for Modern Regression and Bayesian Methods is
Regression and Simulation Methods (or equivalent)



The Scottish Mathematical Sciences Training Centre

Statistics stream

Method of delivery

As standard each lecture will be a total of 2 hours (including a
tea/coffee break!) on|Tuesday from 1.00-3.00)

Questions are encouraged during lectures and there will also be
opportunities to discuss particular issues that arise within lectures
and/or associated exercises.

The first half of semester 1 (Regression and Simulation Methods)
will be run as an online video course. It covers what for most will
be revision. We ask you to check the material covered. If any of
it is unfamiliar, you can view the relevant lectures, and attempt the
related tutorial questions. Tutorial help will be arranged locally.



The Scottish Mathematical Sciences Training Centre

Statistics stream
Assessments

Short projects after each block of 5 sessions.

These will be marked and individual feedback provided.



The Scottish Mathematical Sciences Training Centre
Statistics stream

Stream outline

Regression and simulation methods Modern regression and Bayesian methods

Introduction to R Random effects models

Review of linear models Modern regression

Likelihood and optimisation Case study

Review of generalised linear An Introduction to Markov chain
models (GLMs) Monte Carlo (MCMC) Methods

Simulation and bootstrapping
Case study



The Scottish Mathematical Sciences Training Centre

Regression and simulation methods
Syllabus

Introduction to R

1 Data structures and types; standard plotting facilities; elemen-
tary statistical functions; distributions within R; simple control
structures; simple example of writing a function; a taster of more
sophisticated facilities.



The Scottish Mathematical Sciences Training Centre

Regression and simulation methods
Syllabus

Review of linear models

2 Basic results on estimation, confidence intervals and tests within

the linear model; model checking; the use of factors; fitting
linear models in R.

3 The analysis of simple designed experiments; case studies of
linear models

F(X)=PB0+) X;B
71=1



The Scottish Mathematical Sciences Training Centre

Regression and simulation methods
Syllabus

Likelihood and optimisation

4 Likelihood principles and key distributional results; examples of
likelihood fitting and analysis; Newton's method for optimisa-
tion.

5 Plotting and inspection of two-parameter likelihoods; more gen-
eral methods of optimisation of multiparameter functions; im-
plementation in R.



The Scottish Mathematical Sciences Training Centre

Regression and simulation methods
Syllabus

Review of GLMs

6 Exponential family, with examples for standard distributions (e.g.
normal, gamma, Binomial, Poisson, Negative Binomial); link
functions; examples.

7 Iteratively weighted least squares; model fitting within R, includ-
ing function glm; case studies.

Nonlinear

p
f(X) =06+ Z X0 m==) |\ transformation
j=1



The Scottish Mathematical Sciences Training Centre

Regression and simulation methods
Syllabus

Simulation and bootstrapping

8 Non-parametric bootstrap for calculating standard errors; con-
fidence intervals (percentile intervals); implementing the boot-
strap within R.

9 Parametric bootstrap, simulation methods and implementation
in R; examples (e.g. linear regression).



The Scottish Mathematical Sciences Training Centre

Regression and simulation methods
Syllabus

Case study

10 This session will be constructed around real scientific studies
where statistical methods were central to the solution of the
problem of interest. The methods required will involve some of
the techniques discussed earlier in the course. However, some
further techniques will be introduced, as required by the analysis.



The Scottish Mathematical Sciences Training Centre

Modern regression and Bayesian methods
Syllabus

Random effects models

11 A summary of methods for linear mixed effects models as in
Pinheiro & Bates: case studies.

12 A summary of methods for non-linear mixed effects models as
in Pinheiro & Bates: case studies.



The Scottish Mathematical Sciences Training Centre

Modern regression and Bayesian methods
Syllabus

Modern regression

13 Density estimation; different methods of nonparametric regres-
sion with one and two covariates; bandwidth selection; examples
of use.

14 Additive models; the backfitting algorithm; generalized additive
models; examples.



The Scottish Mathematical Sciences Training Centre

Modern regression and Bayesian methods
Syllabus

An Introduction to MCMC Methods

16 Introduction to Bayesian methods, prior specification, posterior
distribution, summary statistics, prior sensitivity, marginal dis-
tributions; underlying idea behind Markov chain Monte Carlo.

17 Metropolis-Hastings algorithm; Gibbs sampler; issues of conver-
gence; length of burn-in; mixing properties; tuning parameters.

18 Introduction to WinBUGS; basic examples to demonstrate pre-
vious principles.
19 Coding MCMC simulations within R; further examples.

20 Introduction to advanced topics, for example, the use of auxiliary
variables (e.g. random effects), missing data, model selection;

WinBUGS/R.



The Scottish Mathematical Sciences Training Centre

Modern regression and Bayesian methods
Syllabus

Case study

This session will be constructed around real scientific studies
where statistical methods were central to the solution of the
problem of interest. The methods required will involve some of
the techniques discussed earlier in the course. However, some
further techniques will be introduced, as required by the analysis.



