SMSTC, Structure and Symmetry

Alex Sisto, Heriot-Watt a.sisto@hw.ac.uk

ChatGPT tells us:

ChatGPT tells us:

★ **Algebra** Algebra is a branch of mathematics dealing with symbols and the rules for manipulating those symbols.

ChatGPT tells us:

- ★ **Algebra** Algebra is a branch of mathematics dealing with symbols and the rules for manipulating those symbols.
- ★ **Geometry** Geometry is the study of shapes, sizes, and properties of space. It focuses on the properties of points, lines, surfaces, and solids.

ChatGPT tells us:

- ★ **Algebra** Algebra is a branch of mathematics dealing with symbols and the rules for manipulating those symbols.
- ★ **Geometry** Geometry is the study of shapes, sizes, and properties of space. It focuses on the properties of points, lines, surfaces, and solids.
- ★ **Topology** Topology is a more abstract branch of mathematics that studies the properties of space that are preserved under continuous transformations, such as stretching or bending, but not tearing or gluing.

ChatGPT tells us:

- ★ **Algebra** Algebra is a branch of mathematics dealing with symbols and the rules for manipulating those symbols.
- ★ **Geometry** Geometry is the study of shapes, sizes, and properties of space. It focuses on the properties of points, lines, surfaces, and solids.
- ★ **Topology** Topology is a more abstract branch of mathematics that studies the properties of space that are preserved under continuous transformations, such as stretching or bending, but not tearing or gluing.

Each of these fields offers unique insights and tools for understanding mathematical concepts!

Theme overview

Theme overview

Semester 1 core courses

- ★ Algebraic Geometry
 - Giulia Gugiatti, University of Edinburgh giulia.gugiatti@ed.ac.uk
 - Ivan Cheltsov, University of Edinburgh
 I.Cheltsov@ed.ac.uk

★ Differential Topology

 Jim Belk, University of Glasgow jim.belk@glasgow.ac.uk

Supplementary Modules (separate presentations)

★ Conformal Field Theory and Vertex Operator Algebras

Anatoly Konechny, Heriot-Watt University
 A.Konechny@hw.ac.uk

★ Homotopy Theory

- Irakli Patchkoria, University of Aberdeen irakli.patchkoria@abdn.ac.uk
- Mark Powell, University of Glasgow mark.powell@glasgow.ac.uk

★ D-modules

 Gwyn Bellamy, University of Glasgow Gwyn.Bellamy@glasgow.ac.uk

Theme overview

Semester 2 core courses

- ★ Representation Theory
 - Christian Korff, University of Glasgow Christian.Korff@glasgow.ac.uk
- ★ Algebraic Topology
 - Livio Ferretti, University of Glasgow Livio.Ferretti@glasgow.ac.uk

Supplementary Modules, Part 1

★ Gravity

 Sayantani Bhattacharya, University of Edinburgh sbhatta5@ed.ac.uk

★ Resurgence

Murad Alim, Heriot-Watt University
 M.Alim@hw.ac.uk

★ Stable Homotopy Theory

- Irakli Patchkoria, University of Aberdeen irakli.patchkoria@abdn.ac.uk
- Mark Powell, University of Glasgow mark.powell@glasgow.ac.uk

Supplementary Modules, part 2

★ Low-dimensional topology

- Matt Cordes, Heriot-Watt University
 M.Cordes@hw.ac.uk
- Alex Sisto, Heriot-Watt University
 A.Sisto@hw.ac.uk

★ Geometric group theory

Alex Martin, Heriot-Watt University
 A.Martin@hw.ac.uk

★ Geometry of elliptic curves

 Elena Denisova, University of Glasgow e.denisova@sms.ed.ac.uk

- **★** Algebraic Geometry
 - ► Commutative algebra.

★ Algebraic Geometry

► Commutative algebra.

★ Differential Topology

- ► Multivariable calculus.
- Point-Set Topology.
- ► First course in Differential Geometry, for example on curves and surfaces.

Note: If you're interested in a course, but worried about prerequisites, please contact the lecturer(s).

★ Representation theory

- ▶ Basic linear algebra and basic algebra concepts.
 - Definitions and examples of groups, rings and fields.
- ▶ Basic notions of group theory.
 - Permutations, symmetric groups, Lagrange's theorem, normal subgroups and factor groups.

★ Representation theory

- Basic linear algebra and basic algebra concepts.
 - Definitions and examples of groups, rings and fields.
- Basic notions of group theory.
 - Permutations, symmetric groups, Lagrange's theorem, normal subgroups and factor groups.

- ▶ Working knowledge of metric space and topological spaces.
- ▶ Linear algebra.
- ▶ Group theory.

(1) Affine varieties and morphisms.

- (1) Affine varieties and morphisms.
- (2) Projective varieties, rational maps and blow-ups.

- (1) Affine varieties and morphisms.
- (2) Projective varieties, rational maps and blow-ups.
- (3) Schemes and (quasi-)coherent sheaves.

(1) Smooth manifolds and their tangent bundles.

- (1) Smooth manifolds and their tangent bundles.
- (2) More general vector bundles and fibre bundles.

- (1) Smooth manifolds and their tangent bundles.
- (2) More general vector bundles and fibre bundles.
- (3) Calculus on manifolds (Lie derivative, exterior derivative, connections, holonomy, curvature, Stokes' Theorem).

- (1) Smooth manifolds and their tangent bundles.
- (2) More general vector bundles and fibre bundles.
- (3) Calculus on manifolds (Lie derivative, exterior derivative, connections, holonomy, curvature, Stokes' Theorem).
- (4) de Rham cohomology.

- (1) Smooth manifolds and their tangent bundles.
- (2) More general vector bundles and fibre bundles.
- (3) Calculus on manifolds (Lie derivative, exterior derivative, connections, holonomy, curvature, Stokes' Theorem).
- (4) de Rham cohomology.
- (5) (Hope) Chern-Weil theory and characteristic classes.

Representation Theory

Representation Theory

- Representation theory of finite groups
 - Algebras, group/matrix algebras, representation/modules, Schur's lemma.
 - Tensor products, Maschke's theorem and (lots of examples of) characters.

Representation Theory

- Representation theory of finite groups
 - ► Algebras, group/matrix algebras, representation/modules, Schur's lemma.
 - Tensor products, Maschke's theorem and (lots of examples of) characters.
- Representations of the symmetric group and the general linear group.
 - Young diagrams
 - Schur-Weyl duality
 - Outlook on further aspects.

(0) Basic examples and constructions of topological spaces, manifolds, CW-complexes.

- (0) Basic examples and constructions of topological spaces, manifolds, CW-complexes.
- (1) Fundamental groups and higher homotopy groups.

- (0) Basic examples and constructions of topological spaces, manifolds, CW-complexes.
- (1) Fundamental groups and higher homotopy groups.
- (2) Homology, computations and applications.

- (0) Basic examples and constructions of topological spaces, manifolds, CW-complexes.
- (1) Fundamental groups and higher homotopy groups.
- (2) Homology, computations and applications.
- (3) An introduction to cohomology.

Enjoy the Theme!