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What is the course about?

I Homotopy theory: Study spaces and continuous maps up to
homotopy, that is up to continuous deformations.

I Main goal: Study continuous maps up to homotopy between
spheres Sn −→ Sm.

I Main object of study: πnS
m = [Sn,Sm], (pointed) homotopy

classes of maps between the spheres.



What is the course about?

I Homotopy theory:

Study spaces and continuous maps up to
homotopy, that is up to continuous deformations.

I Main goal: Study continuous maps up to homotopy between
spheres Sn −→ Sm.

I Main object of study: πnS
m = [Sn,Sm], (pointed) homotopy

classes of maps between the spheres.



What is the course about?

I Homotopy theory: Study spaces and continuous maps up to
homotopy,

that is up to continuous deformations.

I Main goal: Study continuous maps up to homotopy between
spheres Sn −→ Sm.

I Main object of study: πnS
m = [Sn,Sm], (pointed) homotopy

classes of maps between the spheres.



What is the course about?

I Homotopy theory: Study spaces and continuous maps up to
homotopy, that is up to continuous deformations.

I Main goal: Study continuous maps up to homotopy between
spheres Sn −→ Sm.

I Main object of study: πnS
m = [Sn,Sm], (pointed) homotopy

classes of maps between the spheres.



What is the course about?

I Homotopy theory: Study spaces and continuous maps up to
homotopy, that is up to continuous deformations.

I Main goal:

Study continuous maps up to homotopy between
spheres Sn −→ Sm.

I Main object of study: πnS
m = [Sn,Sm], (pointed) homotopy

classes of maps between the spheres.



What is the course about?

I Homotopy theory: Study spaces and continuous maps up to
homotopy, that is up to continuous deformations.

I Main goal: Study continuous maps up to homotopy between
spheres Sn −→ Sm.

I Main object of study: πnS
m = [Sn,Sm], (pointed) homotopy

classes of maps between the spheres.



What is the course about?

I Homotopy theory: Study spaces and continuous maps up to
homotopy, that is up to continuous deformations.

I Main goal: Study continuous maps up to homotopy between
spheres Sn −→ Sm.

I Main object of study:

πnS
m = [Sn,Sm], (pointed) homotopy

classes of maps between the spheres.



What is the course about?

I Homotopy theory: Study spaces and continuous maps up to
homotopy, that is up to continuous deformations.

I Main goal: Study continuous maps up to homotopy between
spheres Sn −→ Sm.

I Main object of study: πnS
m = [Sn, Sm], (pointed) homotopy

classes of maps between the spheres.



Two semesters

I First semester: unstable homotopy theory. homotopy groups,
CW-complexes, fibrations, long exact sequences,
Eilenberg-MacLane spaces, Serre spectral sequence,
computations and applications, . . . , Freudenthal suspension
theorem.

I Second semester: stable homotopy theory. Freudenthal says
πn+kS

n stabilises when n is very large. We will study this
stable value denoted by πkS, called the k-th stable homotopy
group of spheres. These are far away from being computed.
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What are we studying?

I We already know that π0S = πnS
n = [Sn,Sn] ∼= Z. This is

done using the singular homology and mapping degree: given
f : Sn −→ Sn, deg(f ) ∈ Z provides a well-defined
isomorphism.

I Cellular approximation: πnS
m = for n < m.

I Famous mistake: Some people thought in 30’s that
πnS

m = [Sn,Sm] = 0 if n 6= m. Wrong!

I Hopf: π3S
2 ∼= Z generated by the Hopf map η : S3 −→ S2.

I Stably π1S ∼= π4S
3 ∼= π5S

4 ∼= π6S
5 ∼= · · · ∼= Z/2. Generated

by higher and higher suspensions of η.
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The Hopf map S3 −→ S2



The rational calculation

I Serre’s PhD thesis: πnS
m is a finitely generated abelian group.

I πnS
m ⊗Q =

{
Q n = 2m − 1, m even

0 otherwise

I πkS ∼= πn+kS
n is finite for k ≥ 1 and n >> 0 (k + 2 ≤ n).

I E.g. π1S ∼= Z/2.
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Fancy tools to compute

I So how can we compute higher πnS ∼= πn+kS
n for and any k

and n >> 0?

I Use homological algebra: The Adams spectral sequence which
is a procedure like a chess board:

Exts,tA∗
(F2,F2)⇒ πt−sS∧2 ,

where A∗ is the dual Steenrod algebra.
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Visualisation of the Adams spectral sequence for
computing πkS

1 2 3 4 5 6 7

Z/2 Z/2 Z/24 0 0 Z/2 Z/240
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Assesments

I Five written homework assignments, due in at the end of
weeks 2, 4, 6, 8, and 10. (short, 2-3 questions).

I One 10-20 minute talk (depending on numbers) on a topic in
homotopy theory, during the last lecture.

I Best 5 out of 6 to count, 20% each.

I Each lecturer will set and grade one homework.



Assesments

I Five written homework assignments, due in at the end of
weeks 2, 4, 6, 8, and 10. (short, 2-3 questions).

I One 10-20 minute talk (depending on numbers) on a topic in
homotopy theory, during the last lecture.

I Best 5 out of 6 to count, 20% each.

I Each lecturer will set and grade one homework.



Assesments

I Five written homework assignments, due in at the end of
weeks 2, 4, 6, 8, and 10. (short, 2-3 questions).

I One 10-20 minute talk (depending on numbers) on a topic in
homotopy theory, during the last lecture.

I Best 5 out of 6 to count, 20% each.

I Each lecturer will set and grade one homework.



Assesments

I Five written homework assignments, due in at the end of
weeks 2, 4, 6, 8, and 10. (short, 2-3 questions).

I One 10-20 minute talk (depending on numbers) on a topic in
homotopy theory, during the last lecture.

I Best 5 out of 6 to count, 20% each.

I Each lecturer will set and grade one homework.



Assesments

I Five written homework assignments, due in at the end of
weeks 2, 4, 6, 8, and 10. (short, 2-3 questions).

I One 10-20 minute talk (depending on numbers) on a topic in
homotopy theory, during the last lecture.

I Best 5 out of 6 to count, 20% each.

I Each lecturer will set and grade one homework.



Thanks!


