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Overview of the theme

The theme can be divided into two broad categories:

the formulation and analysis of mathematical models

methods or tools needed to analyse and simulate them

Two modules per category; self-contained and independent.

Two major areas of modelling:

continuum mechanics

mathematical biology

Not comprehensive, but illustrative of a range of approaches.

Two complementary sets of methods:

asymptotic and analytic

numerical

Again not comprehensive, but illustrative. In both cases the aim is
to develop approximate methods in a systematic, quantitative way.
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Continuum Mechanics (semester 1)

❍ Continuum mechanics describes how deformable media behave:

Fluids (liquid/gas)

Solids (elastic/plastic)

Continuum hypothesis + Newton II:

⇒ O(1024) molecules: can’t solve F = ma for each

⇒ Treat medium as a continuum of parcels, each small on scale
of motion, each containing large number of molecules

⇒ Then u, p, ρ, etc, considered as functions of (x, t)

Huge range of applications (nano-technology to astrophysics)
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Continuum Mechanics (semester 1)

Topics:

Continuum mechanics: construction of dynamical models of
deformable media

Fluid Dynamics: lubrication theory, aerofoils, hydrodynamic
stability

Non-Newtonian fluids: fluid viscosity depends on internal
stresses
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Mathematical Biology and Physiology (semester 2)

❍ Mathematical modelling in the life sciences.

❍ Modelling of just about any aspect of biological systems:

Circulation (e.g., blood flow in arteries)

Patterns (e.g., rashes)

Populations dynamics

Cell dynamics (dynamics at cell scale)

Diseases/treatments (epidemiology)
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Mathematical Biology and Physiology (semester 2)

Topics:

Bacterial resistance: antibiotics

Mathematical Physiology: microscale/macroscale &
homogenisation

Population Modelling: epidemiology, evolution,
pathogen-host interactions, age-structured models

Mathematical Oncology: cancer modelling
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Asymptotic and Analytical Methods (semester 1)

Problems frequently contain a “small parameter” ϵ ≪ 1.

Can change the character of the problem

iϵ∂tu + ϵ2∆u + Vu = 0.

Some examples:

In PDEs (e.g. Navier–Stokes, Schrödinger), small terms may
give rise to boundary layers or caustics.

In forced oscillators, small forcings may lead to resonance.

These lectures will provide a toolkit for tackling such problems.
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Asymptotic and Analytical Methods (semester 1)

Example: Asymptotic expansion of the error function:

erf(x) =
2√
π

∫ x

0
e−t2dt (< 1).

Seek an expansion to evaluate erf(x) for large x .

❍ First attempt: Taylor expand e−t2 and integrate term-by-term:

erf(x) =
2√
π

[
x − x3

3
+

1

5

x5

2!
− . . .+

(−1)n

2n + 1

x2n+1

n!
+ . . .

]

Convergent: gets arbitrarily close to erf(x) for any x

x = 4: needs > 40 terms for a reasonable approximation

x = 4: first 16 terms sum to 105
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Asymptotic and Analytical Methods (semester 1)

❍ Alternative approach: Write

erf(x) = 1− 2√
π

∫ ∞

x
e−t2dt

and integrate by parts n times:∫ ∞

x
e−t2dt =

∫ ∞

x

te−t2

t
dt

= e−x2
[
1

2x
− 1

4x3
+

3

8x5
+ . . .+

(−1)n−1

2n
1.3.5...(2n − 3)

x2n−1

]
+ Rn

x = 4: first 2 terms give erf(4) to within 10−7
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Asymptotic and Analytical Methods (semester 1)

Topics:

Multiple scales: modulation and resonance

Matched Asymptotics: boundary layers

WKB Theory: rapidly oscillating solutions, ray theory

Approximation of Integrals: Watson’s lemma, steepest
descent

Intermediate Asymptotics: self-similarity of solutions

Resummation: techniques for series
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Numerical Methods (semester 2)

❍ Ways to solve mathematical models numerically.

❍ Often there is a compromise between ease of implementation
and efficiency.

❍ Or between speed (computational cost) and accuracy.

Topics:

Ordinary DEs: Explicit, implicit and multistep methods

Stochastic DEs: Brownian Motion, Stochastic Integrals,
Stochastic DEs and simulations

Partial DEs: Finite Difference and Finite Element methods

Linear Algebra: Numerical Solution of Linear Systems and
Eigenvalue problems.
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Numerical Methods (semester 2)

❍ Numerical methods for PDEs
Many models in applied mathematics are based on PDEs.

Many pieces of software claim to be able to solve PDEs.

Pretty pictures are not always accurate!!!

It is good to know what are some standard things that can go
wrong.

These lectures will look at some of the basic questions:

How can we discretise PDEs to give systems of algebraic
equations?

How can we solve the resulting systems efficiently?

How do we prove these methods have desirable properties, like

Consistency (representing the desired PDE)
Stability (not being hypersensitive to data)
Convergence (error decreasing as resolution increases)
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Numerical Methods (semester 2): Finite Differences
❍ Example: FTCS method for the heat equation: ∂tu = ∆u
(homogeneous Dirichlet BCs):

Un+1
i ,j − Un

i ,j

∆t
=

Un
i+1,j − 2Un

i ,j + Un
i−1,j

(∆x)2
+

Un
i ,j+1 − 2Un

i ,j + Un
i ,j−1

(∆y)2
.

If ∆x = ∆y , choose ∆t <
(∆x)2

2
to ensure stability and hence

convergence.

Gaussian bump (IC; left) and FTCS approximation (after 50 steps; right)
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Numerical Methods (semester 2):
Finite Elements: More Advance Techniques!

Semilinear parabolic equations: Regional blowup

∂tu −∆u = u2 in Ω × (0,T ], Ω = (−8, 8)× (−8, 8)

u0(x , y) = 10(x2 + y 2)e−0.5(x2+y2) ; Blowup set: circle centred on (0, 0)
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Numerical Methods (semester 2):
Finite Elements: More Advance Techniques!

Complicated geometries

Sharply localised features

Semiclassical behaviour of NLS

Cai, McLaughlin & McLauglin, 2002 Bertola & Tovbis, 2013

NLS dispersive breaking
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Numerical Methods (semester 2):
Finite Elements: More Advance Techniques!

Complicated geometries

Sharply localised features

Cosmology: Galaxy formation

Kopp, Vattis & Scordis, 2017 From the page of Dr. R. Kaehler

2d & 3d simulations for galaxy formation
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Prior knowledge, delivery and assessment

Assumed knowledge of standard, core undergraduate material:

Calculus, ODEs, PDEs

Linear Algebra

Complex Variables

More details on the module pages.

Lectures:

Methods: Wed. 1300–1500

Modelling: Thurs. 1530–1730

Sometimes exercises are given to complete before the lectures.

Assessment: two assignments per module

Mix of analytic and computational work

Normally at least two weeks to complete each
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