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Overview of the theme

The theme can be divided into two broad categories:

the formulation and analysis of mathematical models

methods or tools needed in the process

Two modules per category; self-contained and independent.

Two major areas of modelling:

continuum mechanics

mathematical biology

Not comprehensive, but illustrative of a range of approaches.

Two complementory sets of methods:

asymptotic and analytic

numerical

Again not comprehensive, but illustrative. In both cases the aim is
to develop approximate methods in a systematic, quantitative way.
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Continuum Mechanics (semester 1)

Continuum mechanics describes how deformable media behave.

Fluids (liquid/gas)
Solids (elastic/plastic)

Continuum hypothesis + Newton II

O(1024) molecules: can’t solve F = ma for each

Treat medium as a continuum of parcels, each small on scale of
motion, each containing large number of molecules

Then u, p, ρ, etc, considered as functions of (x, t)

Huge range of applications (nano-technology to astrophysics).

Diverse examples at: https://gfm.aps.org/
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Continuum Mechanics (semester 1)

hurricane jupiter pole protoplanetary disc

all modelled with

qt + J(ψ, q) = F q = ∇2ψ
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Continuum Mechanics (semester 1)

Topics:

continuum mechanics: construction of dynamical models of
deformable media

fluid dynamics: lubrication theory, aerofoils, hydrodynamic
stability

non-Newtonian fluids: fluid viscosity depends on internal
stresses
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Mathematical Biology and Physiology (semester 2)

Mathematical modelling in the life sciences: exciting and rapidly
evolving!

Modelling of just about any aspect of biological systems:

circulation
patterns
populations
cell dynamics
diseases/treatments
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Mathematical Biology and Physiology (semester 2)

Topics:

bacterial resistance: antibiotics

mathematical physiology: microscale/macroscale &
homogenisation

population modelling: epidemiology, evolution,
pathogen-host interactions, age-structured models

mathematical oncology: cancer modelling
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Asymptotic and Analytical Methods (semester 1)

Methods for problems typically involving a small parameter, ε� 1

Difference between ε = 0 and ε� 1 is often profound.

Often remarkably successful, even when they shouldn’t be!

Richard Scott, St Andrews Applications of Mathematics



Asymptotic and Analytical Methods (semester 1)

Example: asymptotic expansion of the error function:

erf(x) =
2√
π

∫ x

0
e−t

2
dt (< 1).

Seek an expansion to evaluate erf(x) for large x .

First attempt: Taylor expand e−t
2

and integrate term-by-term:

erf(x) =
2√
π

[
x − x3

3
+

1

5

x5

2!
− . . .+

(−1)n

2n + 1

x2n+1

n!
+ . . .

]

convergent: gets arbitrarily close to erf(x) for any x

x = 4: needs > 40 terms for a reasonable approximation

x = 4: first 16 terms sum to 105
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Asymptotic and Analytical Methods (semester 1)

Alternative approach: write

erf(x) = 1− 2√
π

∫ ∞
x

e−t
2
dt

and integrate by parts n times:∫ ∞
x

e−t
2
dt =

∫ ∞
x

te−t
2

t
dt

=e−x
2

[
1

2x
− 1

4x3
+

3

8x5
+ . . .+

(−1)n−1

2n
1.3.5...(2n − 3)

x2n−1

]
+ Rn

the radius of convergence is zero: it diverges for x 6= 0

x = 4: first 2 terms give erf(4) to within 10−7
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Asymptotic and Analytical Methods (semester 1)

Topics:

multiple scales: modulation and resonance

matched asymptotics: boundary layers

WKB theory: rapidly oscillating solutions, ray theory

approximation of integrals: Watson’s lemma, steepest
descents

intermediate asymptotics: self-similarity of solutions

resummation: techniques for series
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Numerical Methods (semester 2)

Ways to solve mathematical models numerically.

Often there is a compromise between ease of implementation and
efficiency.

Or between speed and accuracy, etc...

Example: iterative method to solve a nonlinear system

Lα[φ] = qN [φ] → φn+1 = L−1α

[
qN [φn]

]
But might find the method fails for α > αc .
Try a relaxation:

φn+1 = (1− w)φn + wL−1α

[
qN [φn]

]
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Numerical Methods (semester 2)

Topics:

Ordinary DEs: explicit and implicit methods (stability)

Stochastic DEs: an introduction

Partial DEs: finite-difference and finite-element methods

Linear Algebra: linear systems, eigenvalues etc.
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Prior knowledge, delivery and assessment

Assumed knowledge of standard, core undergraduate material:

calculus, ODEs, PDEs

linear algebra

complex variables

More details on the module pages.

Lectures:

Methods: Wed. 1300–1500

Modelling: Thurs. 1530–1730

Sometimes exercises are given to complete before the lectures.

Assessment: two assignments per module

mix of analytic and computational work

normally at least two weeks to complete each
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