SMSTC Supplementary module

An introduction to Hopf algebras over fields

Andrew Baker (University of Glasgow)

last updated 01/10/2024

Outline

Prerequisites: As background, basic knowledge of rings, modules and representation theory of groups would be useful, as well some familiarity with category theory, commutative diagrams and homological algebra.

Learning outcomes: As well as exposure to important topics in modern abstract algebra, this is a good place to gain familiarity with the use of category theory in mathematics.

Who might be interested: Likely to be of interest to mathematicians working on topics such as representation theory of finite dimensional algebras and finite groups, knot theory, Lie theory, algebraic topology, algebraic geometry, non-commutative geometry.

Practicalities: There will be opportunities for participants to give short talks on topics that particularly interest them, these could be used for gaining credit for the course.

Quick introduction

A &-algebra (A, φ, η) over a field & is a monoid in the monoidal category ($\mathsf{Vect}_\&, \otimes$), i.e., a &-vector space A with a product $\varphi \colon A \otimes A \to A$ and unit $\eta \colon \& \to A$, which make the following diagrams in $\mathsf{Vect}_\&$ commute.

A is commutative if in addition the following diagram commutes.

The dual notion is that of a k-coalgebra, which is a triple (C, ψ, ε) , with C a k-vector space, a coproduct $\psi \colon C \to C \otimes C$, and a counit $\varepsilon \colon C \to k$ fitting into the commutative diagrams shown.

This says that (C, ψ, ε) is a *comonoid* in **Vect**_{\mathbb{R}}. If the following diagram commutes then C is *cocommutative*.

A &-Hopf algebra H is a &-vector space which is both an algebra and a coalgebra together with an antipode $\chi\colon H\to H$, so that all of this structure interacts in a certain way. A Hopf algebra is a *group object* in the category of coalgebras or a *cogroup object* in the category of algebras, so Hopf algebras generalise groups!

Some examples:

- ▶ The group algebra $\mathbb{k}[G]$ of a group G is a cocommutative Hopf algebra with the elements of G as a basis, product $\varphi(g'\otimes g'')=g'g''$, coproduct $\psi(g)=g\otimes g$ and antipode $\chi(g)=g^{-1}$.
- ▶ If *G* is a compact Lie group or more generally an *H*-space, $H_*(G; \mathbb{k})$ and $H^*(G; \mathbb{k})$ are Hopf algebras.
- If $\mathfrak g$ is a Lie algebra, its universal enveloping algebra $U(\mathfrak g)$ is a cocommutative Hopf algebra.
- Affine group schemes have associated commutative Hopf algebras.
- Examples from combinatorics.
- Quantum groups are Hopf algebras which are neither commutative nor cocommutative.

Outline of course content

Depending on time and the audience's interests, I expect to discuss most of the topics below.

- Some category theory: monoidal categories (vector spaces over a field as an important example), adjoint functors.
- Algebras and coalgebras over a field; bialgebras and Hopf algebras.
- Lots of examples.
- SubHopf algebras, adjoint actions and normal subHopf algebras.
- Modules and comodules, representation theory of a Hopf algebra.
- ► Hopf modules and finite dimensional Hopf algebras; every finite dimensional Hopf algebra is Frobenius.
- Quantum Groups.
- If time permits: Homological algebra for modules over Hopf algebras.