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Outline

Prerequisites: As background, basic knowledge of rings, modules and
representation theory of groups would be useful, as well some familiarity
with category theory, commutative diagrams and homological algebra.

Learning outcomes: As well as exposure to important topics in modern
abstract algebra, this is a good place to gain familiarity with the use of
category theory in mathematics.

Who might be interested: Likely to be of interest to mathematicians
working on topics such as representation theory of finite dimensional
algebras and finite groups, knot theory, Lie theory, algebraic topology,
algebraic geometry, non-commutative geometry.

Practicalities: There will be opportunities for participants to give short talks
on topics that particularly interest them, these could be used for gaining
credit for the course.
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Quick introduction

A k-algebra (A ,ï,Ù) over a field k is a monoid in the monoidal
category (Vect

k
,⊗), i.e., a k-vector space A with a product

ï : A ⊗A → A and unit Ù : k −→ A , which make the following
diagrams in Vect

k
commute.

(A ⊗A )⊗A

ï⊗Id
��

oo � // A ⊗ (A ⊗A )

Id⊗ï
��

A ⊗A

ï
!!

A ⊗A

ï
}}

A

k⊗A

Ù⊗Id
��

A�oo

Id

��

� // A ⊗k

Id⊗Ù
��

A ⊗A

ï
��

A ⊗A

ï
��

A

A is commutative if in addition the following diagram commutes.

A ⊗A

ï ##

oo switch
�

// A ⊗A

ï{{
A
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The dual notion is that of a k-coalgebra, which is a triple (C ,è,ê),
with C a k-vector space, a coproduct è : C → C ⊗C , and a counit
ê : C → k fitting into the commutative diagrams shown.

(C ⊗C )⊗C oo � //
OO

è⊗Id

C ⊗ (C ⊗C )
OO
Id⊗è

C ⊗Cdd

è

C ⊗C::

è

C

k⊗COO
ê⊗Id

C//� OO

Id

oo � C ⊗kOO
Id⊗ê

C ⊗Caa

è

C ⊗C==

è

C

This says that (C ,è,ê) is a comonoid in Vect
k

.
If the following diagram commutes then C is cocommutative.

C ⊗Cbb

è

oo switch
�

// C ⊗C<<

è

C
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A k-Hopf algebra H is a k-vector space which is both an algebra and
a coalgebra together with an antipode ç : H → H , so that all of this
structure interacts in a certain way. A Hopf algebra is a group object
in the category of coalgebras or a cogroup object in the category of
algebras, so Hopf algebras generalise groups!
Some examples:

▶ The group algebra k[G ] of a group G is a cocommutative Hopf
algebra with the elements of G as a basis, product
ï(g ′ ⊗g ′′) = g ′g ′′ , coproduct è(g) = g ⊗g and antipode
ç(g) = g−1.

▶ If G is a compact Lie group or more generally an H -space,
H∗(G ;k) and H ∗(G ;k) are Hopf algebras.

▶ If g is a Lie algebra, its universal enveloping algebra U(g) is a
cocommutative Hopf algebra.

▶ Affine group schemes have associated commutative Hopf
algebras.

▶ Examples from combinatorics.
▶ Quantum groups are Hopf algebras which are neither

commutative nor cocommutative.
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Outline of course content

Depending on time and the audience’s interests, I expect to discuss
most of the topics below.
▶ Some category theory: monoidal categories (vector spaces over

a field as an important example), adjoint functors.
▶ Algebras and coalgebras over a field; bialgebras and Hopf

algebras.
▶ Lots of examples.
▶ SubHopf algebras, adjoint actions and normal subHopf algebras.
▶ Modules and comodules, representation theory of a Hopf

algebra.
▶ Hopf modules and finite dimensional Hopf algebras; every finite

dimensional Hopf algebra is Frobenius.
▶ Quantum Groups.
▶ If time permits: Homological algebra for modules over Hopf

algebras.
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