SMSTC Supplementary module

An introduction to Hopf algebras over fields

Andrew Baker (University of Glasgow)

last updated 01/10/2024

Prerequisites: As background, basic knowledge of rings, modules and representation theory of groups would be useful, as well some familiarity with category theory, commutative diagrams and homological algebra.

Learning outcomes: As well as exposure to important topics in modern abstract algebra, this is a good place to gain familiarity with the use of category theory in mathematics.

Who might be interested: Likely to be of interest to mathematicians working on topics such as representation theory of finite dimensional algebras and finite groups, knot theory, Lie theory, algebraic topology, algebraic geometry, non-commutative geometry.

Practicalities: There will be opportunities for participants to give short talks on topics that particularly interest them, these could be used for gaining credit for the course.

Quick introduction

A \mathbb{R} -algebra (A, φ, η) over a field \mathbb{R} is a monoid in the monoidal category ($Vect_{k}$, \otimes), i.e., a k -vector space A with a product $\varphi: A \otimes A \rightarrow A$ and *unit* $\eta: \mathbb{k} \rightarrow A$, which make the following diagrams in Vect_k commute.

A is commutative if in addition the following diagram commutes.

The dual notion is that of a $\mathbb k$ -coalgebra, which is a triple (C, ψ, ε) , with C a Ik-vector space, a coproduct $\psi: C \to C \otimes C$, and a counit $\varepsilon: C \to \mathbb{R}$ fitting into the commutative diagrams shown.

This says that (C, ψ, ε) is a comonoid in **Vect**_k.

If the following diagram commutes then C is cocommutative.

A \Bbbk -Hopf algebra H is a \Bbbk -vector space which is both an algebra and a coalgebra together with an antipode $\chi: H \rightarrow H$, so that all of this structure interacts in a certain way. A Hopf algebra is a group object in the category of coalgebras or a cogroup object in the category of algebras, so Hopf algebras generalise groups! Some examples:

- \triangleright The group algebra $\mathbb{K}[G]$ of a group G is a cocommutative Hopf algebra with the elements of G as a basis, product $\varphi(\vec{\boldsymbol{g}}'\otimes\vec{\boldsymbol{g}}'')= \boldsymbol{g}'\boldsymbol{g}''$, coproduct $\psi(\boldsymbol{g})=\boldsymbol{g}\otimes\boldsymbol{g}$ and antipode $\chi(g) = g^{-1}.$
- \blacktriangleright If G is a compact Lie group or more generally an H-space, $H_*(G; \mathbb{k})$ and $H^*(G; \mathbb{k})$ are Hopf algebras.
- If g is a Lie algebra, its universal enveloping algebra $U(q)$ is a cocommutative Hopf algebra.
- ▶ Affine group schemes have associated commutative Hopf algebras.
- ▶ Examples from combinatorics.
- ▶ Quantum groups are Hopf algebras which are neither commutative nor cocommutative.

Depending on time and the audience's interests, I expect to discuss most of the topics below.

- ▶ Some category theory: monoidal categories (vector spaces over a field as an important example), adjoint functors.
- ▶ Algebras and coalgebras over a field; bialgebras and Hopf algebras.
- ▶ Lots of examples.
- ▶ SubHopf algebras, adjoint actions and normal subHopf algebras.
- ▶ Modules and comodules, representation theory of a Hopf algebra.
- ▶ Hopf modules and finite dimensional Hopf algebras; every finite dimensional Hopf algebra is Frobenius.
- ▶ Quantum Groups.
- ▶ If time permits: Homological algebra for modules over Hopf algebras.