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Geometry of Gauge Fields



The inventors of gauge theory

Figure: James Clerk Maxwell and Hermann Weyl



A fruitful failure



Length scale (‘gauge’) depends on position and time?

Assume the length scale is given by a positive, real-valued function
` : R4 → R+.



Length scale (‘gauge’) depends on position and time?

Parallel transport of a length scale in terms of 1-form
A = Atdt + A1dx1 + A2dx2 + A3dx3:

d` = −A`, (1)

Change the gauge `′ = λ` with re-scaling function λ : R4 → R+. In
order to maintain the condition (1) in the new gauge we require

A′ = A− d lnλ.

F = dA is unchanged!
Electromagnetic field? Einstein: ruled out by experiment



Gauging the Schrödinger Equation

Introduce gauge potential a on R4 and covariant derivatives

D = d + A

Then the gauged Schrödinger equation

i~Dtψ = − ~2

2m

3∑
j=1

D2
j ψ, (2)

is covariant under gauge transformation

ψ 7→ ψ′ = eiχψ, a 7→ a− dχ,

which leaves invariant the probability

p(t ,R) =

∫
R
|ψ(t ,x)|2d3x .

This is the gauge potential of Maxwell’s electrodynamics!



What is gauge theory?

I All measurements depend on conventions and ‘gauges’ - but
reality does not. Which mathematical quantities are gauge
invariant?

I Gauge theories now used in physics, mathematics, economics
and finance.

I The unreasonable effectiveness of gauge theories in modern
physics and mathematics. Why?

I Here: gauge freedom captured by compact Lie groups
U(1),SU(2),SU(n)....



Contents

1. Review of vector fields and differential forms on manifolds,
introduction to Lie groups and Lie algebras.

2. Fibre bundles and associated vector bundles, connections,
curvature, characteristic classes;

3. Maxwell theory as U(1) gauge theory, Dirac monopole as
curvature, wave function of charged particle as section of
associated line bundle;

4. Chern-Simons theory and the moduli space of flat connections
on a Riemann surface, Atiyah-Bott symplectic structure;

5. Classical Yang-Mills theory, monopoles and instantons,
self-duality equations, ADHMN construction of instantons and
monopoles;

6. Outlook on moduli spaces of instantons and monopoles,
S-duality and L2-cohomology.



A giant of modern gauge theory

Figure: Michael Atiyah with statue of James Clerk Maxwell in Edinburgh



Prerequisites

I Some understanding of differentiable manifolds and differential
forms, group theory

I Some familiarity with Lie algebras and Lie groups would be
helpful but will not be assumed.



Take this course if you are interested in ...

I Connections between geometry, topology and physics,
I The mathematical theory of fibre bundles and connections,
I The language in which the Standard Model of Particle Physics is

formulated,
I Beautiful applications of mathematics to physics: Yang-Mills

theory, magnetic monopoles, instantons.
I Surprising applications of physics to mathematics: Donaldson

theory, knot invariants from Chern-Simons theory, Seiberg-Witten
theory (but we will not study them here in any detail!).
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Classical and Quantum Integrability



The oldest classical integrable system: Kepler’s problem



Classical integrability in a nutshell

We have
I A symplectic manifold M of dimension 2n: physically the phase

space or space of ‘positions and momenta’
I Poisson brackets {f ,g} for f ,g ∈ C∞(M)

I A Hamiltonian H ∈ C∞(M) which generates time evolution
according to

ḟ = {H, f}.

We want:
I n − 1 further functions f1, . . . , fn−1 so that

{H, fi} = 0, and {fi , fj} = 0, i , j = 1, . . . , (n − 1).

I An understanding of the geometrical flow generated by H.



Contents

1. Foundations: Review of manifolds, differential forms, vector
fields and Lie derivatives; Lie groups and Lie algebras.

2. Introduction to symplectic geometry and mechanics:
Hamiltonian mechanics; Poisson brackets; symmetry and
Noether’s theorem in Hamiltonian mechanics; moment(um)
maps; Liouville theorem; examples

3. Poisson-Lie structures I: Poisson manifolds and symplectic
leaves; co-adjoint orbits; Poisson-Lie algebras and Poisson-Lie
groups; examples.

4. Poisson-Lie structures II: Co-boundary Poisson-Lie algebras
and the classical Yang-Baxter equations; classical doubles;
Sklyanin brackets; dressing action and symplectic leaves;
examples.

5. Classical integrable systems: Lax pairs and classical
r-matrices; construction of integrable systems out of co-boundary
Lie bi-algebras; applications (e.g Toda chain)



Quantum integrability: the hydrogen atom



Quantum integrability in a nutshell

We have
I A Hilbert space H: the space of quantum states.
I Self-adjoint operators A : H → H: the observables of the theory.
I A particular self-adjoint operator, called the Hamiltonian H, which

generates time evolution according to

Ȧ = i~[H,A].

We want:
I A (possibly infinite) family operators Ai , i = 1,2 . . . which satisfy

[Ai ,Aj ] = [Ai ,H] = 0, i , j = 1, . . .

I The ground state of H
I The discrete spectrum of H and the Ai , i = 1,2 . . .
I Other quantum properties of the system such as correlation

functions.



Contents

1. Statistical lattice models & combinatorics: Motivating
examples from enumerative combinatorics; partition functions;
transfer matrices; quantum R-matrices; the quantum
Yang-Baxter equation;

2. The Yang-Baxter Algebra & the Bethe Ansatz: Monodromy
matrices and the Yang-Baxter algebra; diagonalising the transfer
matrix; Bethe equations; guiding example: the 6-vertex model on
the cylinder and the torus

3. Quantum Groups I: Axioms and examples; the Yang-Baxter
algebra as a quantum group; the 6-vertex model and XXZ
spin-chain as motivating example

4. Quantum Groups II: Representation theory; Uq(ŝl2); the
R-matrix; short-exact-sequences and the XXZ fusion hierarchy



Prerequisites

I Some understanding of differentiable manifolds and differential
forms, group theory

I Some familiarity with Lie algebras and Lie groups would be
helpful but will not be assumed.



Take this course if you are interested in ...

I A rapidly evolving field which connects algebra, geometry,
topology and physics

I A geometrical formulation of classical mechanics in the language
of symplectic and Poisson structures

I The classical Yang-Baxter equation and how it gives rise to
Poisson-Lie structures and integrable systems

I The role of quantum groups in quantum integrable systems
I A toolkit for solving problems in quantum field theory, string

theory and condensed matter physics which are not (easily)
amenable to other techniques
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