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Structure & Symmetry

Wikipedia tells us:

⋆ Algebra (from Arabic ”al-jabr”, literally meaning ”reunion of
broken parts”) is the study of mathematical symbols and the
rules for manipulating these symbols.

⋆ Geometry (from the Ancient Greek: geo- “earth”, -metron
“measurement”) is a branch of mathematics concerned with
questions of shape, size, relative position of figures, and the
properties of space.

⋆ Topology (from the Greek topos, place, and logos, study) is
concerned with the properties of a geometric object that are
preserved under continuous deformations, such as stretching,
twisting, crumpling and bending, but not tearing or gluing.
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Semester 1

⋆ Representation Theory
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• Iordanis Romaidis, University of Edinburgh
iromaidi@exseed.ed.ac.uk
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Supplementary Modules (separate presentations)

⋆ Geometry of Gauge Fields
• José Figueroa O’Farrill, University of Edinburgh
j.m.figueroa@ed.ac.uk

⋆ Riemann surfaces
• Ruadhai Dervan, University of Glasgow
ruadhai.dervan@glasgow.ac.uk
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Prerequisites

⋆ Representation theory
▶ Basic linear algebra and basic algebra concepts.

• Definitions and examples of groups, rings and fields.

▶ Basic notions of group theory.

• Lagrange’s theorem, normal subgroups and factor groups.

⋆ Algebraic Topology
▶ A course in metric spaces or topological spaces. (Negotiable,

see email.)
▶ A course in group theory.

• Group actions.
• Finitely generated abelian groups.
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• Representation theory of finite groups
▶ Algebras, group/matrix algebras, representation/modules,

Schur’s lemma.
▶ Tensor products, Maschke’s theorem and (lots of examples of)

characters.

• Representations of the symmetric group and the general linear
group.
▶ Young diagrams
▶ Schur-Weyl duality
▶ Outlook on further aspects.
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Algebraic Topology

(0) Basic examples and constructions of topological spaces.

(1) Manifolds, CW-complexes.

(2) Fundamental groups and higher homotopy groups.

(3) An introduction to homology.

(4) Computations and applications of homology.

(5) An introduction to cohomology.
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Algebraic Geometry

“The goal of this course is to give students a zoomed-out
perspective on algebraic geometry [...] and provide plenty of
examples.”

(1) Affine varieties.

(2) Schemes and sheaves.

(3) Projective varieties, morphisms and fibre products.

(4) vector bundles, (quasi-)coherent sheaves and sheaf
cohomology.
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Differential Topology

(1) Smooth manifolds and their tangent bundles

(2) More general vector bundles and fibre bundles.

(3) Calculus on manifolds: Lie derivative, the exterior derivative,
connections, holonomy, curvature.

(4) Stokes’ Theorem.

(5) de Rham cohomology.

(6) Introduction to Chern-Weil theory and characteristic classes
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Enjoy the Theme!


