Mathematical Models

Thursdays 15.30-17.30

Peter Stewart, University of Glasgow peter.stewart@glasgow.ac.uk

Mathematics can be used to understand and quantify real-world phenomena

The idea is to form a mathematical model – a system of mathematical equations which describe these phenomena

Once the model has been validated, it can be used to make predictions of how the system will behave

Perspective

This course will:

- 1. Focus on applications
- 2. Explain the origin and construction of mathematical models
- 3. Derive these models as ODEs and PDEs
- 4. Focus on constructing solutions to particular problems
- 5. Examine the practical implications of the model predictions
- This is not an applied analysis or methods course!

Where mathematical models come from

- 1. Basic physical laws (eg conservation properties)
- 2. Observations of the system behaviour
- 3. Intuition of what might give "correct" behaviour

Problem driven: not maths driven

Semester 1: Continuum mechanics

Rational mechanics

Penny Davies, University of Strathclyde

Fluid mechanics

Peter Stewart & Nick Hill, University of Glasgow lain Stewart, University of Dundee

Although some of you may have taken courses in continuum mechanics before - this will include lots of ideas not covered in UG lectures (eg lubrication theory, non-Newtonian fluids etc)

Semester 1: Continuum mechanics

Rational mechanics

Introduction to tensors Kinematics Balance laws Cauchy's theorem of stress Constitutive laws

Semester 1: Continuum mechanics

Fluid mechanics

General concepts in the theory of Newtonian fluids Lubrication theory Classical aerofoil theory Hydrodynamic Stability theory

- Surface water waves
- Boundary layer theory

Continuum theory of non-Newtonian fluids, including Ostwalde-de Waele, Bingham, Herschel-Bulkley and comparisons with Newtonian fluids.

Semester 2: Mathematical Biology and Physiology

Mathematical Physiology

Peter Stewart (University of Glasgow) Radostin Simitev (University of Glasgow)

Airflow in the lungs Blood flow in arteries and veins Modelling of electrophysiology

Semester 2: Mathematical Biology and Physiology

Mathematical Biology

Rachel Norman & Andy Hoyle (University of Stirling), Dougie Spiers (University of Strathclyde), Frits Veerman (University of Edinburgh)

Population modelling Evolution Age-structured models Patterns and waves in Turing models

Prerequisites

- Basic linear algebra
- Vector calculus
- Introductory courses on ODEs and PDEs
 No prior experience of continuum mechanics,
 mathematical modelling or biology is required!
 Students who already have a knowledge of
 continuum mechanics can take Semester 2
 without having taken Semester 1.
 - Come along and learn some new skills!

 One assessment on each module divided into two parts:

Semester 1 (1) Continuum mechanics (2) Fluid mechanics

Semester 2 (1) Mathematical physiology (2) Mathematical biology